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Abstract—In many parallel scientific simulations, work is as-
signed to processors by decomposing a spatial domain consisting
of mesh cells, particles, or other elements. When work per
element changes, simulations can use dynamic load balance
algorithms to distribute work to processors evenly. Typical SPMD
simulations wait while a load balance algorithm runs on all
processors, but this algorithm can itself become a bottleneck.

We propose a novel approach based on two key observations:
(1) application state typically changes slowly in SPMD physics
simulations, so work assignments computed in the past still
produce good load balance in the future; (2) we can decouple
the load balance algorithm so that it runs concurrently with
the application and more efficiently on a smaller number of
processors. We then apply the work assignment “late”, once it
has been computed. We call this approach lazy load balancing.

In this paper, we show that the rate of change in work
distribution is slow for a Barnes-Hut benchmark and for ParaDiS,
a dislocation dynamics simulation. We implement an MPMD
framework to exploit this property to save resources by running a
load balancing algorithm at higher parallel efficiency on a smaller
number of processors. Using our framework, we explore the
trade-offs of lazy load balancing and demonstrate performance
improvements of up to 46%.

I. INTRODUCTION

Developers of high performance simulations must ensure that
computational work is balanced among processes to maximize
parallel efficiency. Current supercomputers comprise millions
of processors, and as concurrency levels continue to increase,
balancing work becomes increasingly difficult. Re-balancing
work at runtime is necessary because many simulations have
workloads that evolve dynamically. Some codes use mesh
cells, particles, and other logical elements to represent their
domains, but the computational work per element can change
over time, causing the application to become imbalanced.

The cost of imbalance increases with scale. Most scien-
tific simulations use an SPMD parallel programming model,
and underloaded processes must wait for overloaded ones to
complete before continuing. The larger the application run, the
more processing resources are wasted by a single slow process.
Thus, we must fix even small imbalances at scale. Moreover, in
the strong-scaling limit, balancing work becomes increasingly
difficult as the available parallelism becomes more coarse-
grained with respect to the number of processes.

Many large-scale parallel applications use load balance
algorithms to redistribute work evenly. Depending on the ap-
plication, a fast, local load balance algorithm may be suitable.

However, graph partitioners are typically employed for the best
balance, efficient communication optimizations, and for work
assignment to be aware of locality within the simulated phys-
ical domain [8], [21]. Graph partitioners are computationally
intensive, require sophisticated parallelization, and typically
exhibit worse strong scaling than the simulation itself. This
makes them too expensive at scale.

In this paper, we describe lazy load balancing, a new
approach that allows efficient large-scale applications to use
load balance algorithms that distribute load well and optimize
communication, even if they have high latency and scale
poorly. We decouple the load balance algorithm from the ap-
plication and run it on separate processors. This removes load
balance computation from the application’s critical path, and it
allows the application and the load balancer to run at their most
efficient respective scales. In this MPMD configuration, work
is reassigned lazily in the application program as assignments
become available from the load balancer.

Lazy work assignment must handle application state
changes that occur while the load balance algorithm runs.
These changes can impact the work distribution, and we call
this change drift. Fortunately, state changes slowly in most
applications, so a work assignment computed from stale state
typically continues to be a good assignment for many time
steps. Lazy load balancing guarantees a correct application
state after work reassignment, even with application drift.
Our contributions include:

• A lazy load balancing framework;
• An empirical evaluation of drift metrics for two applica-

tions, Barnes-Hut and ParaDiS;
• An analytical model that predicts the right size for a load

balance partition from application characteristics.

We show that our approach can improve performance by up
to 46%, even for applications with substantial drift.

Section II describes related work. Section III outlines our
lazy load balancing approach. Section IV describes our MPMD
framework for offloading the load balance algorithm. Sec-
tion V introduces our model for deciding if lazy load balancing
will be beneficial. Section VI outlines the application proper-
ties and drift metrics that make lazy load balancing feasible.
Section VI-A describes the applications that we balance along
with their drift metrics. Section VII shows our results.
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Fig. 1: Distributed Application Element Graph

II. BACKGROUND AND RELATED WORK

Most SPMD physics codes divide the simulated domain
into logical elements, which are assigned to processors in
the parallel machine. Often, the work per element varies over
time, so evenly dividing elements among processors does not
guarantee an even distribution of work. Figure 1 shows an
application domain with elements divided among three pro-
cesses. The domain is represented as a graph with elements as
nodes weighted by their computational work. Communication
dependencies among elements are shown as edges. Dashed
edges represent (weighted) interprocess communication.

Periodically, simulations use dynamic load balance algo-
rithms to reassign work to processors. An accurate assignment
must solve the balanced graph partition problem, which is NP
complete [13]. In practice, many applications employ local
algorithms to balance work only among neighboring processes.
This does not balance work or minimize communication as
well as graph partitioning [17]. Thus, applications that need
more balance use a graph partitioner. While graph partitioning
is well studied and many heuristics exist [8], [21], parallel
graph partitioning algorithms scale poorly. Figure 2 shows
strong scaling performance of a parallel graph partitioner
running on an IBM Blue Gene/Q for 32 to 65,536 processors.
Peak efficiency occurs with 2,048 processors, after which,
runtime increases. On 65,536 processes, the algorithm spends
all of its time in communication, and the runtime skyrockets.
Poor scalability leads many applications to use partitioning
only offline. Others run a partitioner inefficiently at large scale,
as memory constraints can prohibit running on fewer nodes.

Recent work has partially addressed the scalability of
parallel graph partitioners by assigning coordinates to graph
components in a lattice-based multilevel embedding [14]. This
solution can work for some applications but scalable solutions
to the graph partitioning problem are challenging because of
the trade-off between computing high-quality partitions and
limiting the added communication. Our approach enables high-
accuracy graph-partitioning at runtime by addressing:

1) Scalability: We designed a framework to tailor the pro-
cess count used by the load balance algorithm; and

2) Memory Constraints: We use sampling to reduce mem-
ory requirements of the load balance algorithm.

Many early load balancing methods on smaller parallel
machines ran on a single processor [15]. Their scale was

4,096 16,384 51,200 65,536
0

500

1,000

1,500

Processes

Ti
m

e
(s

ec
on

ds
)

Fig. 2: Graph Partitioner Runtime. BGQ, 265K vertices

effectively decoupled from that of the application. Our work
builds on this by optimizing decoupled parallel load balancers.

We build on the concurrent programming language notions
of futures, promises, and lazy evaluation. Lazy evaluation [26]
delays the evaluation of an expression until its value is needed.
We delay application rebalancing until directions are known.

Charm++ [4] runs the load balance algorithm asyn-
chronously to the application. However, Charm++ has a par-
allel object model that considers coarse grained objects and
may be impractical for tightly coupled parallel applications.
Charm++ does not have a predictive model of the full load
balancing system, or the ability to right size the resources for
the balancing algorithm. We present a solution that preserves
the computational model in the application and does not
require modifications to existing MPI applications.

Overlapping computation and communication is a well-
known technique to optimize parallel performance [7] for
different algorithms [11] and architectures [27]. Resources
have been dedicated to collective operations [19], I/O [25],
checkpointing [20], and tool services [1]. We overlap applica-
tion and load balance computations.

III. LAZY LOAD BALANCING APPROACH

Figure 3(a) shows the main components of the traditional
approach to load balancing an application. The main steps are:

1) Evaluate Imbalance: Decide whether to correct load
imbalance at this point in execution;

2) Run Load Balance Algorithm: Use a load balance method
to compute directions on how to rebalance;

3) Rebalance the application if needed.
Figure 3(a) and Algorithm 1 demonstrate how these steps

are typically performed while the application’s primary com-
putation is paused. As discussed, this approach is not well
suited to using a graph partitioner; it may leave thousands of
processes waiting while the partitioner runs at low efficiency.

A. Decoupling the Load Balance Algorithm

Load balancers are distinct from applications, and the total
work of load balancing is nearly always smaller than the ap-
plication’s computation. Using the same number of processes
as the application, the load balancer has much less available
parallelism because the granularity of work assignment is
typically much coarser than the resolution of the simulation.

We decouple the resources used by the load balance algo-
rithm from those used by the application. We move the data
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Algorithm 1 Inline LB (PApp == PLB )

1: if procID pi ∈ PApp then
2: Pause computation, Evaluate Imbalance
3: Run Load Balance Algorithm
4: Rebalance
5: Proceed with balanced computation

Algorithm 2 DecoupledLB (PLB ⊂ PApp)

1: if procID pi ∈ PApp then
2: Pause computation, Evaluate Imbalance
3: Send input to corresponding PLBj

4: if procID pj ∈ PLB then
5: Receive input from all corresp. PAppi
6: Run Load Balance Algorithm
7: Send output to all corresponding PAppi
8: if procID pi ∈ PApp then
9: Receive output from corresponding PLBj

10: Rebalance
11: Proceed with balanced computation

Algorithm 3 LazyLB (PApp ∩ PLB == ∅)

1: if procID pi ∈ PApp then
2: Send input to corresponding PLBk

3: Proceed with imbalanced computation
4: if procID pk ∈ PLB then
5: Receive input from all corresp. PAppi
6: Evaluate Imbalance, Run LB Algorithm
7: Sent output to all corresponding PAppi
8: if procID pi ∈ PApp then
9: Receive output from corresponding PLBk

10: Pause computation
11: Rebalance
12: Proceed with balanced computation

Fig. 3: Load Balancing Configurations: Inline, Decoupled, and Lazy

to be partitioned onto a set of processes different from those
used by the application, allowing less scalable algorithms to
run more efficiently on fewer processes. While this approach
may seem obvious, decoupling is rarely if ever used in
practice. Instead, applications use all processes, or they use
a centralized approach with obvious scaling limitations. Our
approach enables consolidation to fewer processes, making it
possible to run load balance algorithms more efficiently.

Figure 3(b) and Algorithm 2 illustrate our decoupled ap-
proach. First, the application pauses and sends its state to
the load balance processes (lines 2-3). Load balance processes
receive the application state (line 5), run in parallel (line 6),
and send an assignment instructions back to the application
(line 7). The application receives the instructions (line 9),
rebalances (line 10), and proceeds with the computation in a
balanced state (line 11). This approach optimizes the resources
used by the load balance algorithm but leaves resources unused
while the application waits for the load balancer.

B. Lazy Load Balance Algorithm

To avoid pausing the application computation while comput-
ing a load balance assignment, we can offload the load balance
computation to a separate balancing partition. This allows
more concurrency, as it overlaps application computation and
load balance computation. Assignments are applied by the
application lazily as they become available.

Algorithm 4 Application Interface
1: for timesteps do
2: Execute application iteration
3: Provide Distributed Application Element Graph to Lazy LB
4: if instructed to rebalance then
5: Reassign work as directed by MPMD Framework

Figure 3(c) and Alg. 3 demonstrate lazy load balancing.
First, the application sends its state to the load balance
processes (line 2). The computation proceeds imbalanced (line
3). The load balance processes receive the application state
(line 5), run the load balance algorithm in parallel (line 6), and
send the instructions back to the application processes (line 7).
The application then receives instructions, pauses, rebalances
(lines 9-11), and proceeds in a balanced state (line 12).

A key difference with Alg. 2 is that when the application
receives load balance instructions (line 9), it has progressed
from its prior state. We assume that the application can only be
rebalanced at timestep boundaries. The load balance algorithm
uses a snapshot s0 of the application at timestep t0 to compute
how to rebalance the application; we refer to this decision as
d0. Assume that d0 results in a balanced application state.
During load balancing, the application advances k timesteps.
Applied to sk, d0 may result in an imbalanced state.
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IV. MPMD FRAMEWORK

We have developed a framework for decoupling the re-
sources used by the load balance algorithm from the appli-
cation resources without changes to the actual computation
in the application. Our framework enables offloading the load
balance algorithm to separate processes, allowing it to execute
asynchronously, without pausing the application.

The requirements on the application are the same as for
adding an external load balance algorithm, namely to provide
the input to the load balance algorithm, and to be able to act
on the rebalancing directions received from it. We describe
the application interface in Algorithm 4. The application
provides a distributed application element graph (described in
Section II, Figure 1) to our framework, just as it would provide
it to a stand-alone load balance algorithm. Our framework runs
the load balance algorithm in its own partition, and handles
the data movement between the application and the load
balance algorithm partition. When directed to rebalance, the
application is responsible for moving work units to processes
indicated by the load balance algorithm.

We achieve this separation by virtualizing MPI and exe-
cuting the application on a different, potentially smaller, set
of processes than the job allocation, as described in Section
IV-A. We describe our asynchronous communication protocol
between the application and balancing processes in Sec.IV-B.

A. Reserving Resources for Load Balancing

Without loss of generality, we focus our implementation
on applications built on top of the Message Passing Interface
(MPI) [16], currently the de-facto standard for large scale
scientific applications. Our approach requires separate proces-
sors for the load balance algorithm. We implement a portable
mechanism in MPI to allocate the processes in an MPMD
fashion without modifying the application. Our framework
virtualizes MPI COMM WORLD using the PMPI interface,
and it allocates separate communicators for the load balancer
and the application, within the same job partition.

We use PNMPI [22] to integrate modules in our framework.
PNMPI is a framework that stacks independent tools built
using the MPI profiling interface [12]. We use PNMPI to

integrate the tools across different process partitions: the
measurement tools, the interaction with the application, and
our new asynchronous component. Our tools add negligible
overhead to the application runtime.

The virtualization module intercepts all application com-
munication, and transparently replaces MPI COMM WORLD
with a smaller communicator, APP COMM and with that
provides the illusion for the application that it is executed
on a smaller set of resources. We can choose arbitrary pro-
cesses within MPI COMM WORLD to run the load balance
algorithm; selecting an optimal physical placement among the
application processes depends on the application and the host
platform and is beyond the scope of this work. With processes
reserved for the load balance algorithm, the application pro-
ceeds, creating its own communicators from the virtualized,
smaller MPI COMM WORLD. The load balance algorithm exe-
cutes asynchronously on a separate communicator, LB COMM,
where MPI COMM WORLD = APP COMM ∪ LB COMM.

Figure 4 shows the interaction of the PNMPI modules
in our framework with the application and libraries. The
virtualization module splits the processes between the two
communicators. Data collection is performed on APP COMM,
which allows the use of additional data collection mod-
ules like Libra [10]. All load balance calculations are run
in LB COMM, including external load balance libraries like
Zoltan [8]. LB COMM processes also determine whether to
send the application rebalance instructions.

B. Asynchronous Interaction Protocol between Application
and Load Balancing Processes

Our tools allow a load balancer to execute asynchronously,
outside the application. Figures 6 and 7 show the com-
munication protocol used by the application and the load
balance processes. Figure 5 shows the shorthand for the valid
state transitions, which indicate when the load representation
(graph) needs to be sent and when the application should
rebalance. The application sends information about its state
and continues to run while the load balance algorithm com-
putes. The execution within the load balancing processes
can be synchronous, allowing us to call MPI libraries (i.e.,
partitioners), directly, without impacting application execution.
The application is sent the rebalancing instructions only when
they have been computed. The application can then apply this
decision at the next stopping point (i.e., between time steps).

If the application is at a stopping point and has not received
rebalancing instructions, it can:
• Always wait for load balancing directions (inline);
• Never wait for balancing directions (fully asynchronous);
• Continue for up to a given number of time steps and then

wait (middle ground).
The above decision can be made at runtime for each stop-

ping point and should be based on a function of how quickly
the application load balance deteriorates. The remainder of
this paper evaluates the fully asynchronous mode, to show the
performance benefits of lazy load balancing.
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TABLE I: Break Down of Execution Time for Standard, Decoupled, and Lazy Approaches to Load Balancing

p Total number of processes t Number of timesteps f (n,w) Runtime of a balanced timestep, on n procs
n Processes used by Application u Num. of unbal. timesteps g(m,w ′) LB runtime on m processes
m Procs used by Decoupled LB t ′ N.steps until imbal.threshold h(m, p,w ′) Comm. bt/w m Decoupled LB & p App. procs
m ′ Processes used by Lazy LB ta Actual steps bt/w rebal. h ′(m ′,n,w ′)Comm. bt/w m ′ Lazy LB and n App. procs
w Work in the Application α Initial Application imbalance r(n,w) App. redistribution time, run on n processes
w ′ Work in the LB algorithm i Rate of change in imbalance tol Imbalance threshold

Standard Decoupled Lazy

Processes p = m = n m ≤ n = p m′ + n = p

Lazy Steps u = 0 u = 0 u > 0 , u = g(m,w′)+h′(m′,n,w′)
α f (n,w)

Actual Steps bt/w Rebalancing 1 ≤ ta ≤ t ′ 1 ≤ ta ≤ t ′ u ≤ ta ≤ t ′

LBTime g(p,w) g(m,w ′) + h(m, p,w ′) g(m ′,w ′) + h ′(m ′,n,w ′)
Application Time t f (p,w) t f (p,w) t f (n,w) + uα f (n,w)
Total Time g(p,w ′) + t f (p,w) g(m,w ′) + h(m, p,w ′) + t f (p,w) t f (n,w) + uα f (n,w)

V. RESOURCE ALLOCATION MODEL

To minimize overall application runtime by selecting the
best load balancing configuration, we develop a performance
model that provides a quantitative basis for deciding how
to allocate the available resources in the system. The cost
model captures the performance characteristics of the standard,
decoupled, and lazy load balancing configurations. To simplify
the explanation, we assume that the load balance algorithm is
able to balance the application fully. As application perfor-
mance prediction is beyond the scope of this work, we use
the cost and benefit analysis at a given point in the simulation
from our previous work to decide whether a rebalancing would
be beneficial [18].

Figure 8 illustrates how the different load balancing config-
urations result in different resource usage. Table I summarizes
the variables used in the performance model. The height
of the block indicates the number of processes (resources);
the length of the block indicates the runtime. We consider
application computation, load balance algorithm computation,
and communication overhead. The lazy approach optimizes
resource usage by running the load balance algorithm on fewer
processes, and by overlapping the load balance algorithm with
the main computation. Running the load balance algorithm
asynchronously means it can run continuously, correcting the
imbalance with a higher frequency than otherwise might be
affordable. Figure 8(d) demonstrates how the application can
continue sending its state to the load balance processes, and
the load balance algorithm can continually compute the rebal-

ancing directions. The frequency of the rebalancing should be
based on the amount of drift that an application can tolerate,
as discussed it in Section VI vs. the number of resources a
user is willing to dedicate to load balancing and with that the
frequency in which new work assignments can be produced.
Model Input:
• p – Total number of processes;
• α – Initial application imbalance;
• t – The smaller of the number of time steps that the

simulation takes, or the number of steps the simulation
takes prior to drift becoming too large;

• Runtime of the application, load balance algorithm, and
communication overhead, as defined in next subsections.

Model Output:
• Choice of standard, decoupled, or lazy configuration;
• m – Number of processes for the load balance algorithm;
• n – Number of processes for the application.
Performance modeling of specific load balance and physical

simulation algorithms are research topics in their own right
and are outside the scope of this paper. Our model uses
curve fitting for the load balance algorithm and the application
runtime to determine how to allocate the resources in the
system.

A. Modeling the Application

The computation time of an application, f (n,w), is a func-
tion of the number of processes and the amount of work in the
application, and we model it with a curve fit. The application
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uses p processes in the inline and decoupled configurations,
and n < p processes in the lazy configuration.

At the beginning of the execution, the application has
an initial imbalance α. Because the standard and decoupled
configurations pause the application execution while the load
balance algorithm computes, the application is redistributed
immediately and computes all t timesteps in a balanced state.
In the lazy configuration, the application continues running
imbalanced for u steps, while the offloaded load balance algo-
rithm computes the directions; we discuss how we determine
u in the next subsection. Once the rebalancing directions are
received, the application is redistributed and completes the
remaining t − u steps in a balanced state. The application
execution time therefore depends on whether the timesteps
are executed prior to or after redistribution, and how many
processes the application uses.

The application provides t , the number of time steps it will
execute. For simplicity, we assume that the drift metric i ,
rate of change in imbalance, is constant. We estimate i at
runtime or accept it as input from the application. Using the
rate of change, we compute how many steps t ′ the application
can execute before it needs to be rebalanced again because it
reaches an imbalance threshold tol :

t ′ =
log(tol × f (n,w))− log(f (n,w))

log(1 + i)
(1)

We use t ′ as the largest number of steps after which the
application needs to be rebalanced. Additionally, we empir-
ically model the cost of application redistribution, r , which
is a function of the data needed by the application and the
number of processes used by the application.

B. Modeling the Load Balance Algorithm

The computation time of a load balance algorithm,
g(m,w ′), is a function of the amount of work and the number
of processes used. The amount of work in the load balance
algorithm, w ′, is usually smaller than the amount of work in
the application itself, w .

The performance of each load balance algorithm is modeled
with curve fitting, and the algorithm will use p processes in

the standard configuration, m ≤ p processes in the decoupled
configuration, and m ′ < p processes in the lazy configuration.

In the decoupled and lazy configurations, the application
processes first send relevant information to the load balance
processes. Once the load balance directions are computed, they
are sent back to the application. We refer to this overhead,
h(m, p,w ′) and h ′(m ′,n,w ′), as communication overhead for
decoupled and lazy configurations. In our implementation, we
use lazy communication between the application processes and
the load balance processes. However, for simplicity we model
this communication as if it cannot be overlapped with the
computation. The runtime of gather/scatter operations depends
on the number of the application processes and load balance
processes, and the amount of data sent.

In the lazy configuration, the application proceeds in an
imbalanced state for u steps, while the load balance informa-
tion is gathered, the load balance algorithm executes, and the
directions are scattered back to the application. We calculate
u as a fraction of the time until the directions are available,
and the length of the imbalanced timestep:

u =
g(m,w ′) + h ′(m ′,n,w ′)

α f (n,w)
(2)

The extra time that the application runs because of the delay
in rebalancing becomes part of the overhead of the lazy load
balancing configuration.

C. Modeling Overall Runtime

The total time for the standard and decoupled configurations
is a sum of load balance algorithm time and application
time, including the gather/scatter overhead in the decoupled
configuration. The total time for the lazy configuration only
includes the application time since the load balance algorithm
time is overlapped; however, the application runs using fewer
processes because some of the resources were reserved for
the load balance algorithm, so the application runtime may
be longer. Additionally, as discussed in Section V-B, the
application runs in an imbalanced state for u steps, which
increases the total time as well.

The decoupled configuration is a generalization of the
standard configuration when m = n = p, h(m, p,w ′) = 0 , so
we only discuss how to choose between the decoupled and lazy
configurations. Given p, the model chooses m , n , and ta s.t.:

min

{
g(m,w ′) + h(m, p,w ′) + t f (p,w)

t f (n,w) + uα f (n,w)
(3)

We discuss an instantiation of our model for our test
applications and load balance algorithm in Section VII-B.

VI. APPLICATION DRIFT

A potential problem with lazy load balancing is that ap-
plication state changes over time. Work per element may
change, as may the number of elements. We call this change
drift. However, the work distribution in most parallel SPMD
applications changes slowly as applications carefully choose
timestep length or use adaptive time-stepping for computa-
tional stability [23]. Often, a balanced assignment computed
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Fig. 10: Application Drift in ParaDiS, 16M Interactions, 2048 Processes

from a past application state is a good approximation of a bal-
anced assignment for the current state, so we can compute the
assignment asynchronously and apply it lazily when available.

Given an assignment A:V→P for a past time step’s ele-
ments V , we compute a drifted assignment A′:V ′→P for the
current time step’s elements V ′ by determining the relationship
between V and V ′. There are three possibilities:

A′(v) =


A(v) v ∈ V ∩ V ′

C(v) v ∈ V ′ \ V
undefined v ∈ V \ V ′

In the first case, v is in both the old and the new application
state, and we reuse its assignment from A. This case will
cover most of the elements, and it is the only case for most
N-body simulations and for unstructured mesh applications
with a static number of cells in the mesh, because in these
applications V = V ′. In the second case, v represents an
application element or task that has been created since the past
state, and we must construct a new function C : V ′\V → P to
assign it. In the third case, v represents an element or task that
no longer exists, and we can ignore its prior assignment. The
second and third cases are typical of adaptive mesh refinement
(AMR) algorithms and other methods in which elements may
be created based on the physics. Computing a good function
for C is application-dependent and we leave its description to
later sections. We next define what it means for an assignment
to be valid and efficient.

Assignment Validity: For A′ to be valid for the new
application state it must be defined for all of V ′. Trivially,
A′ is defined for (V ∩ V ′) ∪ (V ′ \ V ), which equals V ′.

Assignment Efficiency: An assignment is efficient if it
minimizes the deviation in process load, minimizing load
imbalance. We define the imbalance of an assignment I(A) as
the scaled maximum load on any processor minus the average:

I(A : V → P ) =
maxi(W (Vi))− 1

|P |
∑

iW (Vi)

1
|P |

∑
iW (Vi)

(4)

In a bulk synchronous application, the extra load corresponds
to the performance degradation of any overloaded processors.

A. Empirical Evaluation of Drift Metrics

To show the effect that drift has on load balance, we evaluate
the difference between the drifted assignment A′ and the
original assignment A. Here, we look at N-body methods,
an important class of simulations critical for research in
fields such as molecular dynamics, astrophysics, and material
science. N-body methods simulate the evolution of systems of
particles (or bodies). Each particle may exert a force on any
other. The simulation progresses by computing force interac-
tions among particles, then updating the particles to reflect
the force’s effect. Force computations typically consume the
bulk of the execution time, yet this computation can exhibit
significant load imbalance, a major performance problem.

We measure drift for two N-body applications: a Barnes-Hut
algorithm and a dislocation dynamics application, ParaDiS. We
ran each for 500 timesteps, enough for several load balance
computations. The difference between A′ and A depends on
the number of timesteps application has taken between them.

Barnes-Hut [3] is a classic N-body algorithm that uses an
octree to compute approximately the force that the N particles



in the system exert on each other (e.g., through gravity). The
N leaves of the octree are the individual particles, while
the internal nodes summarize information about the particles
contained in the subtree (i.e., combined mass and center of
gravity). Particles that interact with other particles in nearby
cells are computed directly, but for interactions with cells
that are sufficiently far away, only one force computation is
performed for their cells. Our distributed version of Barnes-
Hut is based on a shared memory implementation from the
Lonestar suite in Galois [6]. Our version is written in C++
with MPI for interprocess communication.

Figure 9 shows the drift metrics for Barnes-Hut. In Barnes-
Hut, the number of particles remains the same throughout
the simulation, but the interactions computed per particle
can change as particles move because the simulation only
computes gravitational interactions within a cutoff radius.
The total work, summed over all particles in the simulation,
fluctuates over a range of about 5% of the total initial work
over time (Figure 9(a), total initial work is 100%). The work
per particle in the simulation changes over time (Figure 9(b));
approximately half the particles have the same amount of work
throughout the execution, but the other half’s work changes
up to 5% per time step. The imbalance that results from
this change on each successive step (assuming that we use
a completely balanced assignment from time step zero) grows
only slightly (Figure 9(c)), despite the changes in work per
element in the simulation. Thus, the assignment computed at
step 0 is still an efficient assignment for subsequent steps.

ParaDiS [2], [5] is a large-scale dislocation dynamics
simulation used to study the fundamental mechanisms of
plasticity. The simulation includes O(N ) calculation of forces,
the equations of motion, time integration, adaptive mesh
refinement, the treatment of dislocation core reactions and the
dynamic distribution of data and work on parallel computers.
ParaDiS integrates all of the above algorithms to understand
their behavior in concert and to evaluate the overall numerical
performance of dislocation dynamics simulations and their
ability to accumulate percent of plastic strain. ParaDiS is
written in C/C++ with MPI for interprocess communication.
It computes the short-range forces directly and uses multipole
expansion [24] for long-range force computation.

Figure 10 shows drift metrics for ParaDiS. In ParaDiS, ele-
ments can be created or destroyed as the simulation continues,
thus the total work in the simulation can grow much more
rapidly than in Barnes-Hut (Figure 10(a), total initial work is
100%). Nearly all processors experience a change in workload
on every time step (Figure 10(b)), and the changes grow as the
simulation continues. The change in imbalance (Figure 10(c))
shows that the largest change in imbalance comes from the
creation of elements, but that the use of a drifted assignment
still results in an imbalance of at most 7%.

B. Load Balance Algorithm for N-Body Simulations

We use a precise load balance algorithm for N-body sim-
ulations from our previous work [17], which corrects load
imbalance in a single step, and achieves better load balance

than the available application-specific solutions. The algorithm
consists of the following steps:

1) Select work units with sampling. Sample performed
force computations (interactions); use samples to divide
interactions into subsets, or work units. This is a coars-
ening step on the domain decomposition.

2) Construct model. Use work units, proximity info.
3) Partition model. Assign work units to p processes by

partitioning the work units into p groups.
The load balance algorithm generates a hypergraph by

extracting the particle interactions from the application. To
keep the hypergraph small, the algorithm uses adaptive sam-
pling to choose representative interactions for sets of inter-
actions. The algorithm partitions the hypergraph, assigning
the representative interactions to processes. The algorithm
uses the hypergraph partitioner from Zoltan [9]. By assigning
all of the interactions in a set to a process along with the
representative, the algorithm assigns the interactions explicitly
while preserving the locality.

Work unit persistence should be discussed in the context of
both the application and the load balance algorithm. Although
new particles cannot be created in Barnes-Hut, the amount
of work the simulation performs changes as particles move
in and out of interaction range. ParaDiS, on the other hand,
creates and removes particles throughout its execution; the
amount of work in ParaDiS varies as well. Because the load
balancing algorithm we use makes the assignment based on
samples rather than all particles, we are able to use the same
mechanisms to establish a mapping of all current work units
to the selected samples without the need to rely on complete
particle mappings, ensuring the correctness of the simulation.

VII. PERFORMANCE EVALUATION

For our ParaDiS experiments, we use a Linux cluster with
nodes consisting of two 2.8 GHz Hex-core Intel Xeon EP
X5660 processors, twelve cores per node. All nodes are con-
nected by QDR Infiniband. We use GCC 4.4.7 and MVAPICH
v0.99 on top of CHAOS, an HPC variant of RedHat Enterprise
Linux (RHEL), running at Linux kernel v2.6.32.

For Barnes-Hut experiments, we use an IBM Blue Gene/Q
system, a tightly coupled MPP system that contains PowerPC
based compute nodes with 16 cores (64 hardware threads)
each. Nodes are connected by five dimensional torus network
and run a simplified compute node OS, the CNK. We use GCC
4.4.6 and IBM’s MPICH2-based MPI implementation.

A. Overhead of Lazy Load Balancing

We show strong scaling for all comparisons. Weak scaling
studies of N-body computations are difficult to construct
accurately due to variability in the particle density during
scaling. Showing strong scaling ensures a fair comparison.

Figure 11(a) shows the costs of decoupling the load balance
algorithm as a function of the resources provided to the load
balance algorithm. These costs include sending the data to
the load balancing processes, merging the data from several
application processes on a single load balancing process,
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running the load balance algorithm in parallel on load bal-
ancing processes, unmerging, and sending the load balanc-
ing instructions back to corresponding application processes.
The communication overhead imposed by the decoupling is
proportional to the n : m ratio of application processes to
load balancing processes. When there is high fan-in, the load
balancing processes have a larger serial communication cost.
The time required to run the load balance algorithm at the same
scale as the application is shown for comparison; we discuss
the scaling of the balance algorithm in the next section.

Figure 11(b) shows the overhead of the decoupled and lazy
load balancing configurations as a function of the resources
provided to the load balance algorithm. In the decoupled con-
figuration, overhead includes the load balance algorithm time
and the communication overhead. In the lazy configuration, the
overhead includes the time lost due to running the application
in an imbalanced state while the load balancing directions are
computed. Unbalanced timestep length is shown for scale.

B. Model Validation

Given the total number of processes available, we use our
model to determine the load balancing configuration (no load
balancing, inline, decoupled, or lazy) that will result in the
shortest overall runtime, along with the number of processes
to use to run the application and the load balancing algorithm.

TABLE II: Resource Allocation Model Parameters

p Total available processes 65,536
α Initial application imbalance From App.
i Rate of change in imbalance From App.
t Number of timesteps left From App.
f (n,w) Runtime of bal.timestep on n procs Curve fit
g(m,w ′) LB runtime on m processes Curve fit
h(m, p,w ′) Comm. bt/w m LB & p App. procs Curve fit

Table II summarizes the model parameters. We use a
training set of runs on a similar scale to model the load
balance algorithm, application timestep, and communication
overhead. Figure 12 shows a Barnes-Hut problem with 306.5M
interactions on BGQ. We fit a curve to the training set
measurements (shown as black dots); validation measurements
are shown as red dots. We use least squares fit to model the
parameters in our model. We model the load balance algorithm
and the application timestep as a function of processes. The
communication overhead, however, is closely related to the
ratio between the number of application processes and the
number of load balancing processes, so we model it as a
function of the ratio (Fig.12(c)). At this scale, the application is
still able to take advantage of using more processes, as demon-
strated by the decreasing timestep length (Fig.12(a)). The
graph partitioner becomes slower with additional resources,
because the partitioned graph is small (265K vertices). At this
scale, there is little work per process and high serialized over-
head that increases with the number of processes (Fig.12(b)).
This inefficiency is one of the motivations for our work: by
decoupling the load balance algorithm we can use a graph
partitioner when it would be too expensive to run at full scale.

Figure 13 (bottom) shows the total runtime of all ap-
proaches, including no load balancing at all. At top, we show
the percent runtime improvement achieved using decoupled
and lazy approaches. To simplify the comparison, a single
load balancing step was performed for each approach. For
lazy and decoupled, only the runtimes with the best performing
parameters (number of processes used by application and load
balance algorithm) are shown. We highlight the configuration
selected by the model. In all but one case, the model accurately
selects the best performing configuration. In the case that the
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Fig. 13: Runtime and Improvement Over Inline LB

model selects the second best configuration, the difference
in runtime between the first and second best configuration is
small, so the error results in little performance loss.

Overall, the decoupled and lazy configurations are able to
reclaim the performance lost due to the poor scalability of the
graph partitioner, resulting in 15-46% runtime improvement.
The lazy configuration results in the shortest runtime in most
cases due to overlapping the application and graph partitioning
computations. Our model correctly selects the best performing
configuration along with the parameters, resulting in 17-46%
runtime improvement.

VIII. CONCLUSIONS

We have presented a novel lazy approach to load bal-
ancing that decouples the load balance algorithm from the
application and offloads it to achieve higher concurrency and
better parallel efficiency. We have implemented a framework
that allows developers to decouple their applications with a
simple interface, and we have characterized the application
properties and drift metrics that determine suitability of lazy
load balancing. Finally, we provided a model for allocating
the resources in the system based on the performance of the
application and the load balance algorithm.

We have developed drift metrics to evaluate the rate of
workload change in two applications: a Barnes-Hut benchmark
and a production dislocation dynamics application, ParaDiS.
Using our lazy load balancing approach, we have demonstrated
runtime improvements of up to 46%, and we have shown that
our resource allocation model can accurately predict the load
balance configuration and the resource allocation that result in
the lowest execution time of the application.
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